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Abstract—The COVID-19 pandemic renewed interest in con-
tactless vital signs monitoring using computer vision to effi-
ciently screen for disease symptoms. These vital signs monitoring
systems have been deployed in either surveillance camera
systems or robotic systems. Despite initially promising results,
there has been limited uptake. Surveillance cameras are static,
which requires subjects to remain inside their field of view
during measurement, thus limiting their capacity for continuous
monitoring. Robotic systems are mobile and can autonomously
track subjects during measurement, but they require expensive
software and hardware and tend not to be scalable. In this work,
we propose a cost-effective and scalable robotic solution using
machine vision microcontrollers to capture photoplethysmogra-
phy (PPG) information on ambulatory subjects. We characterize
the performance of our camera system to design an optimized
machine vision protocol to maximize the performance of the
machine vision microcontroller for vital signs monitoring. We
compared the heart rate estimation accuracy of our cost-effective
solution against a state-of-the-art camera (FLIR Blackfly). Our
solution achieves a mean average error of 5.0 BPM, comparable
to the FLIR Blackfly’s mean average error of 4.7 BPM while
keeping social distancing (at least 2 meters between cameras and
subjects). The major contribution of this work is the design of
a machine vision protocol that enables a cost-effective, scalable,
and mobile system to achieve the same heart rate estimation
accuracy as current state-of-the-art methods.

I. INTRODUCTION

Recent advances in computer vision and artificial in-
telligence have enabled contactless measurement of vital
signs such as heart rate via remote photoplethysmography
(rPPG) [1]. These methods have shown great potential during
the COVID-19 pandemic by enabling remote assessment of
individuals for possible COVID-19 disease [2]. The most
straightforward system for rPPG is using surveillance cam-
eras, which require patients to remain static during measure-
ment and remain inside the camera’s field of view, preventing
continuous monitoring. Motivated by this, we previously
proposed a mobile robot system consisting of specialized
cameras mounted on Boston Dynamics’ quadruped robot
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Fig. 1. Robotic blimp for vital signs monitoring consisting of a 32” mylar
helium balloon and a gondola. The blimp’s machine vision microcontroller
coordinates an external PC to perform tasks.

Spot. This system was used to facilitate continuous vital
signs monitoring for emergency department triage [3]. During
its deployment, we learned several factors that limited its
translation: ground obstacles in emergency rooms, limited
battery capacity of large robots, and costly hardware consist-
ing of the robotic platform, high-spec cameras, and on-board
computing units. Together, these factors prevented wide-scale
deployment of the robot for use in hospitals. In this work, we
propose a cost-effective, aerial, robotic solution to address all
of the aforementioned issues.

Due to the various ground obstacles in emergency rooms
and hospital settings, we desired an aerial robot. We selected
miniature blimps as our robotic platform as they are much
safer and quieter than drones. As shown in Figure 1, the
wireless robotic camera consists of a 36” helium foil balloon
with a mounted gondola. An OpenMV H7 Plus (OpenMV)
machine vision microcontroller captures rPPG information
for heart rate estimation and communicates with an external
PC. Unfortunately, this wireless microcontroller can only
handle significantly lower image resolution and frame rate
compared to its state-of-the-art, wired counterparts. Thus,
we designed a novel machine vision protocol that leverages
real-time region of interest (ROI) detection and tracking and
shares computational loads between the microcontroller and
the external PC.
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The main contributions of this paper are two-fold. First, we
describe the development of a cost-effective, easily scalable
robotic platform capable of continuous monitoring. Second,
we propose a novel wireless machine vision algorithm capa-
ble of cutting edge rPPG performance in the cost-effective
platform.

II. RELATED WORKS

A. Remote Photoplethysmography

Photoplethysmograhy (PPG) is an optical technique that
measures changes in light absorption in the capillaries be-
neath the skin, which corresponds to changes in blood
volume. This technique is most commonly used to measure
heart rate and blood oxygen saturation, but it can also be
used to measure respiration and blood pressure [4]. Remote
photoplethysmography (rPPG) refers to contactless methods
for PPG. The most common methods use computer vision,
but methods have been developed that use radar and wire-
less technologies [5], which can be leveraged with artifical
intelligence for additional applications such as monitoring
Parkinson’s. In vision-based methods, a camera records a
subject and detects or segments a region of interest covering
skin pixels. A rPPG algorithm then calculates the pulse signal
from the variations in the region of interest. The plane-
orthogonal-to-skin (POS) method is one such rPPG algorithm
that is motion robust and has previously been demonstrated to
correlate with ground truth heart rate estimation [1]. Despite
the utility of computer vision methods for rPPG measurement,
they restrict movement of the subject and do not enable con-
tinuous monitoring. Individuals must enter and remain in the
camera’s field of view for the entire duration of measurement.
In order to improve potential implementation of rPPG for
ambulatory subjects, previous work have deployed rPPG on
robotic platforms that track and follow subjects [3], [6], [7].

B. Region of Interest

The region of interest (ROI) in an image is the part of
an image with relevant information. For instance, the region
of interest for object detection is the part of an image
containing the object. A common trade-off for cameras is
between image resolution and frame rate: increasing one
necessarily decreases the other. Our previous work developed
a closed-loop ROI algorithm that allows a high-resolution
camera to only capture and transmit the relevant region while
ignoring redundant information to boost the overall frame
rate; furthermore, this works enables a wide field of view to
be maintained while tracking fast-moving objects [8], [9].

For rPPG, common ROIs include the forehead, cheeks,
and face, which contain large regions of unobstructed skin.
Previous work has investigated ROI detection and skin seg-
mentation methods for rPPG [10], [11]. Others have assessed
different ROIs and their suitability for rPPG algorithms [12],
[13]. Due to the use of facemasks, especially inside hospital
settings, the forehead has become more popular and has
been confirmed as an excellent ROI for measuring rPPG
information with a high signal-to-noise ratio [14], [15].

C. Miniature Robotic Blimps

Miniature robotic blimps are a well-researched robotic plat-
form consisting of a helium balloon with an attached gondola.
Small motors and propellers control the blimp’s motion, while
microcontrollers and sensors enable robotic functionalities.
Miniature robotic blimps offer a range of benefits over other
aerial robots, including lower cost, lower noise, and increased
collision tolerance [16], [17]. Moreover, the robotic blimp
does not consume energy to hover, thus resulting in extended
battery life. However, blimps are limited by their lower speed,
lower durability, and smaller payload [16]. The latter is a
particular challenge, as robotic blimps can only carry a very
limited set of sensors, batteries, motors, etc. As a result, some
work have focused on the optimization of parameters such
as number of actuators, [18], gondola placement [19], and
communication interface [20].

Previous works have studied and simulated the dynamics
of miniature robotic blimps to inform the design of control
algorithms [17]. Controlling these blimps is made difficult
due to perturbations caused by airflow and buoyancy changes
due to leakage and variations in ambient conditions. Some
works have designed adaptive motion control algorithms [21],
while others have used reinforcement learning to achieve
robust control policies capable of withstanding wind distur-
bance [22], [23]. Functionalities such as localization, naviga-
tion, path planning, person following, and teleoperation have
all been explored on the robotic blimp platform [24], [25].
Commonly proposed applications for this platform include
search and rescue, surveillance, and video broadcasting [26]–
[28].

III. METHODS

A. Autonomous robotic blimps

The robotic blimp comprises a gondola attached to a mylar
foil helium balloon that is 36” in diameter. The gondola
is composed of the OpenMV H7 Plus (OpenMV) machine
vision microcontroller, the ATWINC1500 WiFi module, a
MellBell Pico microcontroller (0.6” x 0.6” package), a Polulu
DRV8835 dual DC motor driver, one rechargeable LiPo
battery (700 mAh), two mini DC motors with propellers,
and two micro servo motors. The two DC motors controlled
by the DRV8835 can adjust the speed and direction of the
propellers. The two micro servo motors are used to control
pitch angle of the propellers and the yaw angle of the
OpenMV camera, respectively. The OpenMV is the robot’s
onboard controller which is in charge of the decentralized
computation for capturing high-quality rPPG information; the
Pico microcontroller is in charge of blimp locomotion control.
The OpenMV and Pico communicate via I2C. The OpenMV
communicates via WiFi (ATWINC1500 WiFi module [29])
with an external NVIDIA Jetson AGX Xavier embedded
PC (PC). The PC is the centralized computing device that
provides high-level control of the robot.

Figure 2 shows the block diagram of robotic camera op-
erations. The blimp begins by rotating in place, transmitting
captured images over WiFi to the PC. The PC then detects
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Fig. 2. Block diagram of robotic blimp platform for rPPG. The robot
communicates with an external PC to perform operations.

bodies using the YoloV4 object detection model [30]. The
blimp travels to a person using the person-detection bounding
box as the PID feedback, remaining 2m away at all times.
The PC then detects faces using the MTCNN object detection
model [31] and Dlib face pose estimation model. Each blimp
stabilizes to the person’s forehead using the face-detection
bounding box and face pose as the PID feedback. The location
ROI is critical to the flight control, and a rapidly moving ROI
can lead to instability; if the ROI moves out of the field of
view, the blimp returns to the rotate and scan phase to relocate
the ROI. Finally, the blimp uses the hybrid camera method
to stream rPPG video for vital signs estimation.

B. rPPG recording and analyses

To test the proposed camera methods, we applied them to
eleven subjects 2m away from the camera. FLIR Blackfly
USB3 RGB camera was employed as a reference for bench-
marking the performance of the cost-effective wireless cam-
era. Eleven human subjects with various genders, ages, and
demography were recruited for evaluating the cost-effective
solution. The human subject study was approved by the
Institutional Review Board (IRB) of Brigham and Women’s
Hospital for recording the de-identified facial information.
To test parameters that were not camera-specific, we use the
UBFC datset, a public rPPG dataset with 43 subject [32].

The POS algorithm is used to analyze the rPPG information
to estimate vital signs [1]. Typical rPPG algorithms measures
characteristic changes in skin color caused by constriction
and dilation and capillaries. The POS algorithm constructs
two orthogonal signals from variations in the skin’s averaged
RGB signal, from which the pulse signal is extracted.

To test the scalability of our solution, we connected five
static OpenMV cameras to one external PC wirelessly using
the transmission control protocol. All five OpenMV cameras
run our proposed rPPG method while simultaneously coor-
dinating with the PC. We measure the frame rate of each
camera do determine the effects of multithreading.

C. Wireless machine vision protocols

Figure 3 presents the standard and our proposed machine
vision protocol that control the wireless machine vision

camera to capture rPPG information. In the standard method,
the camera captures and transmits the full-resolution image
to an external PC. The PC detects the forehead and computes
the RGB average of the pixels covering the forehead. The av-
eraged RGB value are used to analyze the rPPG information
via the POS algorithm.

Our proposed method leverages the fact that computing
rPPG only requires the forehead, which is a very small region
of interest. A small color tracker is placed on the subject’s
forehead to enable the OpenMV camera to track the forehead.
Though this is a rudimentary form of forehead detection,
microcontrollers such as the OpenMV do not have the ca-
pacity to run more complex models at a reasonable frame
rate. For instance, we tested a TensorFlow Lite model for
the OpenMV using the COCO Common Objects dataset [33];
unfortunately, this model ran at below 1 FPS on the OpenMV.
Color tracking is much simpler and enables real-time, frame-
by-frame detection on the OpenMV.

In our proposed method, the PC first takes the full-
resolution image to find the location of the subject’s face, it
then guides the camera to capture the sub-image containing
the face. The sub-image, which is the blue bounding box
in the Figure 3, allows reasonable head movement while
capturing rPPG information without losing color fidelity. In
every frame, the OpenMV detects the color tracker and uses
its location to estimate the forehead’s location. Detection is
performed by filtering for color blobs in the narrow range of
the color tracker. The OpenMV first calculates the average
RGB value of the forehead and only transmits the averaged
value to the PC. The PC then directly analyzes the rPPG
information. If tracking is lost, the machine protocol resets,
and a full-resolution is captured.

Algorithm 1 shows the pseudocode for our proposed ma-
chine vision method for rPPG. The machine vision camera
initially captures a full resolution image at 2592x1944 pixels.
It then uses the color tracker detector to selection a ROI
of 1280x720 pixels while also computing the rPPG signal.
During vital signs measurement, it is assumed that the subject
is stationary. The machine vision camera will automatically
capture a new full resolution image every 60 seconds to select
the optimal ROI for rPPG.

This method takes advantage of two factors: color detection
is a simple algorithm that can run in real time even on
embedded processors; rPPG does not actually require images

Method Diagram View
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image location 
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Fig. 3. Overview of the standard and our proposed camera methods for
rPPG.
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Algorithm 1 Operations of proposed machine vision protocol
for rPPG

camera.capture window = (0, 0, 2592, 1944)
img = camera.capture image()
tracker = camera.color detection(img)
ROIx loc = (tracker.x - 1280) / 2
ROIy loc = (tracker.y - 720 ) / 2
camera.capture window = (ROIx loc, ROIy loc, 1280, 720)
timer.start()

while True do
img = camera.capture image()
tracker = camera.color detection(img)
forehead = (tracker.x - 250, tracker.y - 100)
average = camera.compute RGB avg(forehead)
camera.Wifi transmit to PC(average)

if timer.time() == 60 seconds then
camera.capture window = (0, 0, 2592, 1944)
img = camera.capture image()
tracker = camera.color detection(img)
ROIx loc = (tracker.x - 1280) / 2
ROIy loc = (tracker.y - 720 ) / 2
camera.capture window = (ROIx, ROIy , 1280, 720)
timer.restart()

end if
end while

of the skin, and only requires the average RGB values of
the skin. Thus, these basic decentralized operations on the
OpenMV are sufficient to enable rPPG.

IV. RESULTS AND DISCUSSION

Vision-based methods monitor patients from a distance. A
camera that is further away from a subject captures subjects at
a lower spatial resolution, which results in increased heart rate
estimation error as shown in Figure 4. One solution is to re-
duce the lens’ focal length to zoom in on the subject; however,
this sacrifices the lens’ field of view, reducing subject tracking
performance. The other solution is to increase the camera’s
image resolution; however, this reduces the frame rate, which
also results in increased heart rate estimation error as shown
in Figure 5. To obtain high accuracy rPPG, it is important to
simultaneously have high image resolution at the region of
interest and high frame rate. However, the OpenMV camera
is limited by its wireless transmission speed: capturing the
ROI at maximum image solution results in an overall frame
rate of 1 FPS, which is far too low to capture rPPG data.

To address the bottleneck in wireless image transmission,
we propose a machine vision protocol that tracks the ROI and
only transmit the ROI to an external PC, which computes
heart rate from the image data. Since the PC does not
receive images covering an entire face, the ROI tracking
must be performed by the machine vision microcontroller.
In the following subsections, we systematically characterize

Fig. 4. Frame rate and number of region of interest pixels versus heart rate
estimation of rPPG methods.

the performance of our proposed method against the standard
method.

A. Spatial and temporal resolution characterization

Figure 6 shows the overall comparison of the OpenMV ma-
chine vision microcontroller operating at maximum resolution
(2592x1944). The standard method operates at 1.0±0.1 FPS,
while the proposed method operates at 17.1±0.7 FPS. As
expected, the proposed method shows that offloading the ROI
detection to the OpenMV and only transmitting image data
containing rPPG information greatly boosts the frame rate for
all steps.

Here, we will elucidate how each step of the camera
and PC operation contributes to the operation speed with
varying the processed image resolution. The first step is image
capturing. To ensure the forehead is covered by 500 x 200
pixels, the standard method must capture the full field of view
at maximum resolution (2592x1944), while the proposed
method only needs to capture a smaller region of interest
containing the face (1280x720). As shown in Figure 6, this
leads to a significant increase in the image capturing speed
from 4 FPS to 38 FPS.

Fig. 5. Frame rate versus heart rate estimation of rPPG methods.
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The second and third steps of the camera methods are
image processing and ROI detection. Raw RGB images are
too large to be wirelessly transmitted in real-time. JPEG
compression significantly reduces image size, but may affect
rPPG accuracy as shown in Figure 7. Indeed, greater image
compression increases the mean absolute error (MAE), but
this effect is limited above a compression factor of 70%.
Thus, when using JPEG compression in our camera methods,
we use a compression quality factor of 70%.

For the standard method, data processing occurs first under
which the image is processed and then wirelessly transmitted
to the PC for ROI detection. For the proposed method,
ROI detection occurs first under which the color marker
is detected, and then the image is processed directly on
the machine vision microcontroller. Figure 8 characterizes
the data processing step. For the Standard and method, we
compress the raw image in JPEG format. For the proposed
method, image compression is not required due to the small
resolution of the eROI; in fact, performing image compression
actually reduces the overall frame rate since due to the time
required to perform compression. In the proposed method,
the camera computes the raw RGB average of the detected
forehead with an image resolution of 500 x 200, requiring
15 ms.

ROI detection is another step that is heavily affected
by the image resolution, as shown in Figure 9. For the
standard method, the PC detects the forehead ROI from the
received image using the MTCNN object detection neural
network [31]. The proposed method has significantly higher
frame rate because it runs a much simpler color tracker that
filters for the specified color range. This strategy allows us
to increase the frame rate resolution for ROI while focusing
on only the key data necessary to calculate rPPG. Under
this circumstance, the proposed achieves 68 FPS for ROI
detection, which is faster than the 18 FPS for the standard
method.

It is worth noting that the characterization of the ROI
detection step may be unfair. Indeed, the proposed method

Fig. 6. Operation time and frame rate comparison between camera methods
for remote rPPG. Data is collected using the OpenMV machine vision
microcontroller at maximum resolution (2592x1944)

Fig. 7. Effect of JPEG image compression on rPPG accuracy. Raw refers to
uncompressed RGB images. Image compression and analysis was performed
using the UBFC dataset.

is significantly better, but it only performs color detection
while the standard method perform face detection. However,
if the standard method used color detection rather than face
detection, its frame rate remains at 1.0 FPS. Since ROI de-
tection is not the bottleneck, these insignificant improvements
do not lead to higher rPPG accuracy.

The last step that would make difference in frame rate is
the wireless data transmission. This is the bottleneck of the
standard as it needs to transmit full resolution images. For
the standard method, a full-size JPEG image (0.1 MB) must
be transmitted, resulting in a frame rate of 2 FPS. For the
proposed method, only the RGB average value (1e-5 MB)
needs to be transmitted, which can be done instantaneously
by the microcontroller’s WiFi module. Thus, the porposed
achieves 956 FPS for data transmission.

Since we are able to partially offload some computation
from the PC to the machine vision camera using the proposed
method, a swarm of robotic blimps can be employed to simul-
taneously monitor multiple subjects using only one central

Fig. 8. Characterization of camera processing using the OpenMV machine
vision microcontroller. The gray dashed line indicates the exact processed
image resolution in the proposed method for image formatting.
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Fig. 9. Characterization of the region of interest detection using the OpenMV
machine vision microcontroller (Proposed) and the PC (Standard). The gray
dashed line indicates the exact processed image resolution in the proposed
method for ROI detection.

PC, thus significantly reducing the overall cost for large-
scale deployment. To test the scalability, we established TCP
connections between five OpenMV machine vision cameras
on the robotic blimps to one central PC via multithreading.
During testing, running five OpenMVs in parallel did not
cause drops in frame rate for any camera operations.

B. Evaluation of rPPG Estimation Accuracy

To validate the accuracy of the proposed protocols, we
employ the USB3 high-resolution FLIR camera capable
of capturing rPPG with the same spatial resolution and a
significantly high frame rate (40 FPS) as the reference.
Figure 10 shows the rPPG accuracy results for nine subjects.
The expensive Standard USB3 Camera (FLIR Blackfly with
RGB888) achieves accurate performance with a mean average
error of 4.7 BPM. The cost-effective, wireless, machine vision
camera (OpenMV H7 Plus) with the proposed method–which
addresses the bottlenecks in ROI detection and wireless data

Fig. 10. Accuracy of proposed rPPG methods against standard benchmark
for nine subjects. The FLIR Blackfly state-of-the-art camera is used as a
benchmark. The proposed methods are deploymed on the OpenMV machine
vision microcontroller.

transmission–achieves comparable performance with a mean
average error of 5.0 BPM due to its sufficiently high frame
rate (17 FPS) while operating at its maximum spatial resolu-
tion (2592x1944). It is shown that the noticeable difference in
the frame rate between the FLIR camera and OpenMV with
the proposed protocol is not a limiting factor in the rPPG
estimation error, a result consistent with Figure 5.

V. CONCLUSION

In this paper, we propose a cost-effective robotic solution
with a wireless machine vision microcontroller capable of
autonomous, continuous vital sign monitoring. We develop
a novel machine vision protocol to enable the cost-effective
system to achieve comparable performance to its expensive
counterpart. Future work will focus on the deployment and
translation of the robot system for patient triage and addi-
tional clinical applications.
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